anonymous
  • anonymous
Calculus question. Why is ∫85−3(√25−t)dt equal to 2(25−t)3/2+85t and not 85t−2(25−t)3/2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
*Rewriting to use TeX* \[\int\limits_{}^{}(85 - 3\sqrt(25-t))dt\] equal to \[2(25-t)^{3/2}+85t\] and not \[85t - 2(25-t)^{3/2}\] Why?
Mr.Math
  • Mr.Math
Use a substitution \(u=25-t\) and see what you get.
phi
  • phi
or take the derivative of each of your answers. Only one will give the correct result.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mr.Math
  • Mr.Math
I see where you went wrong. You replaced \(dt\) by \(du\) and this is wrong, because \(u=25-t \implies du=-dt\). Makes sense?
anonymous
  • anonymous
How does u = (25-t) imply that du = -dt?
Mr.Math
  • Mr.Math
If u=25-t, what's du/dt?
Mr.Math
  • Mr.Math
The derivative of u with respect to t is obviously \(\frac{du}{dt}=-1\). Multiply both sides by \(dt\) you get \(du=-dt\).

Looking for something else?

Not the answer you are looking for? Search for more explanations.