• anonymous
what are the benifits of laplace transformation and partial fractions in circuit analysis please
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • Mr.Math
Most circuits that involve either a capacitor or an inductor or both have to be solved using a differential equation of some form, for example: \(\large \large \frac{d^2i}{dt}+\frac{R}{L}\frac{di}{dt}+\frac{1}{LC}i=0,\) with some initial conditions gives for \(i(0)\) and \(i'(0)\). One of the best tools (maybe the best) for solving such a differential equation is by using Laplace transform, or what you might call changing from "t-domain" to "s-domain".
  • Mr.Math
Partial fractions decomposition is very important for you when you want to transform back your solution in s-domain to the t-domain.
  • Mr.Math
The numbers are not very nice.

Looking for something else?

Not the answer you are looking for? Search for more explanations.