anonymous
  • anonymous
Another one: Which of the following integrals are divergent? There are 3 functions there and I believe that the last 2 both "converge", any ideas anyone?
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
amistre64
  • amistre64
\[\int x^{-2}dx=-x^{-1}\] \[(0)^{-1}+(-4)^{-1}\] \[\lim_{x->0^-} \ \frac{1}{x}-\frac{1}{4}\] i dont think that converges does it ....
anonymous
  • anonymous
Nope, but the last 2 do

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=integrate+7x%5E%28-1%2F2%29+from+0+to+4 yeah, the middle does http://www.wolframalpha.com/input/?i=integrate+9x%5E%28-3%2F2%29%2F10+from+0+to+4 bottom doesnt tho
amistre64
  • amistre64
since 3/2 is > 1 it diverges if memory serves
anonymous
  • anonymous
Oh, I see, I messed up and put the sort on the top of the equation,
anonymous
  • anonymous
sqrt*
amistre64
  • amistre64
it happens :)
anonymous
  • anonymous
Thanks man,

Looking for something else?

Not the answer you are looking for? Search for more explanations.