A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 4 years ago
My chemistry text says the osmotic pressure is found to depend on the concentration of the solution but could some one please elaborate like in what way?directly or inversely?
anonymous
 4 years ago
My chemistry text says the osmotic pressure is found to depend on the concentration of the solution but could some one please elaborate like in what way?directly or inversely?

This Question is Closed

anonymous
 4 years ago
Best ResponseYou've already chosen the best response.0Well, osmotic pressure is given by the equation...\[\Pi =icRT\]Where... Pi is the osmotic pressure i is the van't Hoff factor c is molar concentration R is the universal gas constant T is the temperature Knowing this information, can you determine in what way the osmotic pressure varies with the molar concentration of the solution?

anonymous
 4 years ago
Best ResponseYou've already chosen the best response.0thanks for the quick reply but i was trying to figure out the dependence so i thought that in osmosis the solvent flows from low conc of solution to high conc rite?(frm dilute soln to conc soln.) so when u increase the pressure over the solution its molar conc increases due to decrease in volume so now the differnce in conc has increased...im stuck here cant reach the end of this explanation ..for that i need to knw when u increase the differnce in conc what happens to osmosis

anonymous
 4 years ago
Best ResponseYou've already chosen the best response.0Osmotic pressure is the pressure required to *prevent* solution from flowing through a semipermeable membrane. If you have two solutions, separated by a semipermeable membrane, to find the net osmotic pressure, you need to take the difference between the two osmotic pressures. The Morse equation that I wrote above only returns the osmotic pressure on ONE side of the barrier. If you increase the difference in concentration between the two solutions, you will decrease the osmotic pressure of one solution and increase the osmotic pressure of the other solution, thus making the difference greater, and the overall net osmotic pressure greater. Does that answer your question? Also. As a side note, solutions are going to tend to flow from higher concentration to lower concentration, similar to diffusion.

anonymous
 4 years ago
Best ResponseYou've already chosen the best response.0can u explain without using the word osmotic pressure and only in terms of osmosis...osmosis is flow of solvent from high conc of solvent i.e a dilute soln to low conc of solvent ie a conc solution...so if i make the concentrated soln more concentrated what will happen to rate osmosis?
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.