anonymous
  • anonymous
How do you find an equation for the line satisfying the given conditions. Through (3, 3) and parallel to 3x - 4y = 7 ??
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
campbell_st
  • campbell_st
write the equation of the line in point slope form y = mx + b or y = 3/4 x - 7/4 parallel lines have the same gradient... so use the gradient of this line and the point slope formula.. with the given point
anonymous
  • anonymous
Let the equation of the line be y=mx+c m=3/4 Applying the given point and m 3=3/4*3+c c=3/4 the eqn is y=3/4x+3/4
anonymous
  • anonymous
First isolate y: -4y=-3x+7 y=(3/4)x-7/4 The slope is 3/4. Our parallel line will have this slope as well. Point-slope form: \[y-y1=m(x-x1)\] \[y-3=\frac{3}{4}(x-3)\] slope-intercept form: \[y=mx+b\] \[y=\frac{3}{4}x+\frac{3}{4}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.