anonymous
  • anonymous
In Standing Waves, The condition for an Antinode is (n+1/2)lamda When considering a pipe open at both the ends, Antinode is formed at both the ends, Then why is L = nLamda/2 ? Shouldnt it be L = (n+1/2)lamda/2 ?
Physics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Mani_Jha
  • Mani_Jha
The condition for an antinode is \[x=(2n+1)\lambda/4\]. Check it and for node is \[x=(n+1)\lambda/2\]. If you r considering sound waves, nodes will be formed at the ends, and the same equations hold. The equation \[L=n \lambda/2\] is a consequence of the ends being nodal points(u can see it in 8.03 Vibrations and Waves).

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.