anonymous
  • anonymous
plzz help me now....... if cosy=xcos(a+y) theprove that dy/dx=(cos^2 (a+y))/sina
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i jst dbtknw ...y i g8 stuck wit simple sums....:(
dumbcow
  • dumbcow
using implicit differentiation: \[\frac{dy}{dx} = \frac{\cos(a+y)}{x \sin(a+y)-\sin(y)}\]
dumbcow
  • dumbcow
then im guessing use sum of angles formula

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

dumbcow
  • dumbcow
sin(a+y) = sin(a)cos(y) + sin(y)cos(a)
anonymous
  • anonymous
\[shouldnt ittt be -\sin(y) dy/dx =-\sin(a+y)x+coas(a+y)\]
dumbcow
  • dumbcow
i don't know if im helping :| there should be a dy/dx with the -sin(a+y)x term
anonymous
  • anonymous
ywesssss it shud b sry it din write
anonymous
  • anonymous
pellet....yes u r write....mdumb :P
anonymous
  • anonymous
*pellettt
anonymous
  • anonymous
*pelletttt
anonymous
  • anonymous
***crap...
anonymous
  • anonymous
censorship even here??? :P
dumbcow
  • dumbcow
haha from here though im not sure where to go, they don;t have an x in their answer ...i don't see how the x cancels anywhere

Looking for something else?

Not the answer you are looking for? Search for more explanations.