anonymous
  • anonymous
Sketch the curves y = x^2 and y + 2x = 8. Find the area of the region bound by the x-axis and these two curves by Writing the area as a single de nite integral with respect to y. I honestly have no idea how to do this..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nenadmatematika
  • nenadmatematika
first, find two intersection points of parabola x^2 and line y=-2x+8, and those points will be the boundaries of your integral, so you have integral of (line minus parabola) in those boundaries and that 's how you'll get area
nikvist
  • nikvist
\[y=x^2\quad,\quad y+2x=8\]\[x^2+2x-8=(x-2)(x+4)=0\]\[x=2\quad\Rightarrow\quad y=4\]\[S=\int\limits_0^4\left(4-\frac{y}{2}-\sqrt{y}\right)dy=\left(4y-\frac{y^2}{4}-\frac{2}{3}y^{3/2}\right)_0^4=\]\[=16-4-\frac{16}{3}=\frac{20}{3}\]
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.