At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

\[x^2+4x+4\neq0 \]
\[(x+2)^2\neq0\]
so the domain interval is:

\[x^2+4x+4\neq0 \]
\[(x+2)^2\neq0\]
so the domain interval is: \[x \in(-\infty,-2)\cup(-2,+\infty)\]

R-{-2}

Check your nos nena..

to check what?

Sorry my bad

Once factored you must use fact the Denominator cannot be zero for any real no

it's ok...:D kcbrosell what part you don't understand?

I am not understanding how you get to the result u wrote

I got to this point x^2-4=(x-2)(x+2) & x^2+4x+4=(x^2+2)

you got wrong x^2+2x+4...it is (x+2)^2

o crud...so after I get that worked out do I have to put them into another equation

|dw:1328644954475:dw|

so then my answer would be (-oo, -2) (-2, oo)

yes.

so it all has to do with your neg and pos and how they factor out

okay i thinki understand it a little bit better now thank you for your help

:)