anonymous
  • anonymous
A droplet of water flew vertically from a hot spring geyser at an initial speed of 40 m/s. The approximate height (h), in metres, that the droplet will reach, in (t) seconds is modelled by h = -5t² + 40t. How long before the droplet will reach the ground? Determine the maximum height reached by the droplet of water.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
y2o2
  • y2o2
1) let h = 0 so -5t²+40t = 0 t(-5t+40) = 0 t = 0(refused) or t =8 sec 2) Maximum height is the vertex of the function calculate the x coordinate of the vertex = -b/2a = -40/-10 = 4 sec. calculate the x coordinate of the vertex = f(-b/2a) = f(4) = -5(4)² + 40(4) = 80 m. So max. Height is 80 meters

Looking for something else?

Not the answer you are looking for? Search for more explanations.