Draw the shear and moment diagrams

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Draw the shear and moment diagrams

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1328658787358:dw| FR (triangle) = (1/2)(18m)(300N/m) = 2700N centroid = 2/3(18) = 12m from A FR (triangle) = 3600N 9 meters from rectangle Sum of forces in y direction = FR+FB -FR(rectangle) = 0 Then I solve for FB about A using sum of the moments Is this the right procedure thus far?
|dw:1328659569886:dw|
|dw:1328659825566:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

First, let's find the resultant force of the distribution. It will have a magnitude and location. You've done that right. Now we need to start at A and cut a section to the right of A. Let the length of the section be \(x\). The equation for sheer is simple enough. \[V = 0 = F_{R,A} - w_R \cdot x -w_T \cdot x-V\] Let's solve for \(V\), then integrate the following expression to find the moment. \[M = \int\limits V dx\]
|dw:1329285118055:dw|
Looks right. At least judging from the fact that you got maximum moment at minimum shear.

Not the answer you are looking for?

Search for more explanations.

Ask your own question