liizzyliizz
  • liizzyliizz
Forgot how to do continuity :( Help lol "Given the piecewise function f defined as f(x)= (will draw inside) for what value of a is f(x) continuous at x=1
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

liizzyliizz
  • liizzyliizz
|dw:1328661866669:dw|
y2o2
  • y2o2
Limit or right side must be equal to limit of left side as x tends to 1 [if the function is Cont.]
y2o2
  • y2o2
\[\lim_{x \rightarrow 1^-} (4ax^3+7x) = \lim_{x \rightarrow 1^+}(a+2)x^4 -4 = \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[f(x _{0})\] is defined \[\lim_{x \rightarrow x _{0}}f(x)\] exist (L+ = L-) and \[f(x _{0})=\lim_{x \rightarrow x _{0}}f(x)\]
liizzyliizz
  • liizzyliizz
I understood what y2o2 is saying, but what abermejo said (Although it seems to make sense) I am not sure what he wanted to do with that information.
anonymous
  • anonymous
both information are complementary, the resolution is of y202, sorry for my english Im not american :D
liizzyliizz
  • liizzyliizz
It's perfectly ok :D thanks for helping I was just a bit confused

Looking for something else?

Not the answer you are looking for? Search for more explanations.