Show that the vector (orthogonal b onto a) = (b - (projection of b onto a)) is orthogonal to a. It is called an orthogonal projection of b. from chapter Vectors and the Geometry of Space. Thanks.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Show that the vector (orthogonal b onto a) = (b - (projection of b onto a)) is orthogonal to a. It is called an orthogonal projection of b. from chapter Vectors and the Geometry of Space. Thanks.

OCW Scholar - Multivariable Calculus
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Let & be the angle between B und A. We have to show that B - |B|cos & A/|A| is normal to A. Using the dot product we must have (B - |B|cos & A/|A| )·A =0. Since the dot product is distributive with respect to addition, we can write it as: B·A - |B|cos & A/|A|·A = |B| |A|cos & - (|B|cos & A/|A|)|A|^2 = 0, since (|B|cos & A/|A|)|A|^2 = |B| |A|cos &.
15 minutes ago I posted a reply. I do not understand why the proof is not right. However, I will try to clear some doubts. A/|A| is the unit vector in the direction of A. A·A = |A| |A| cos 0 = |A|^2, then (|B|cos&/|A|)A·A = |B||A| cos&.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question