Solve by completing the square & quadratic formula: x^2 6x + 17 = 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Solve by completing the square & quadratic formula: x^2 6x + 17 = 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[x^2+6x+17=0\] or \[x^2-6x+17=0\]??
Gah, sorry. x^2 + 6x + 17 = 0
\[x^2+6x=-17\] \[(x+3)^2=-17+9\] \[(x+3)^2=-8\] now either you are done because you can't take the root of a negative number, or else you are allowing complex solutions. which is it?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I'm assuming the second option- some of the answers are things like: \[x = 3i \sqrt{2}\]
actually if you are using complext numbers it would be \[x=2\sqrt{2}i\] or \[x=-2\sqrt{2}i\]
...What is it with me today...? But, yes, we've been doing complex numbers.

Not the answer you are looking for?

Search for more explanations.

Ask your own question