more calculus help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

more calculus help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int\limits_{?}^{?}(1)/(xln(x ^{4}))\]
that 1/x is buggin me as a u sub.. but it's prolly integration by parts
start with \[\frac{1}{x\ln(x^4)}=\frac{1}{4x\ln(x)}\] then it should be easy

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Let u = ln(x^4)
Ha I think i got this one!
u = ln(x^4) du = 4/x simple u sub!
good. because i am clueless???
pull the 1/4 outside of the integral get \[\frac{1}{4}\int \frac{dx}{x\ln(x)}\] then make \[u=\ln(x),du=\frac{1}{x}dx\] and you are home free
well yea pretty much the same thing as satellite did
don't forget the properties of the log!
lol my method works too though :)
oookkk i got it
yes it will work and you will see that if \[u=\ln(x^4)\] then \[du=\frac{4}{x}dx\] but that is telling you that \[\ln(x^4)=4\ln(x)\]
would the fianl answer be 1/4ln (ln(x))+c?
Final*
it would be, yes
sweet thanks again.
btw if you notice you will get a different answer from wolfram and if you like i can explain why
please do
here is what wolfram writes if you just type it in. you get \[\frac{1}{4}\ln(\ln(x^4))+c\]
but \[\ln(\ln(x^4))=\ln(4\ln(x))=\ln(4)+\ln(\ln(x))\] and \[\ln(4) \] is a constant. so answers are the same, since the constant is just a constant, like the +C out at the end
oo ok that is simple enough thanks again

Not the answer you are looking for?

Search for more explanations.

Ask your own question