anonymous
  • anonymous
Find the equation of the tangent to y = 2^(2x) - (ln 4)x + 2ln(x +1) when x=0
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Find the y coordinate on the original graph when x = 0 (sub into y = 2^(2x) - (ln 4)x + 2ln(x +1)), and that point corresponds to the point on the graph (x1,y1) Now take the derivative of y = 2^(2x) - (ln 4)x + 2ln(x +1), to find y' And sub in x =0, to find the slope of the tangent (m) at the point x = 0. Now with all the information you have, you can substitute your values in the line equation: y-y1 = m(x -x1), to find the equation of your tangent

Looking for something else?

Not the answer you are looking for? Search for more explanations.