• anonymous
A rocket rises vertically, from rest, with an acceleration of 3.2 m/s^2 until it runs out of fuel at an altitude of 1200 m. After this point, its acceleration is that of gravity downward. a) what is the velocity of the rocket before it runs out of fuel? b) How long does it take to reach that point? Answer: a) 88 m/s. b) 27 sec
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Let's use the following equations. \[d = v_0 \cdot t + {1 \over 2} \cdot a \cdot t^2\]\[v = v_0 + a \cdot t\]We know the acceleration and altitude, therefore from the first equation, we can solve for the time of flight. This is the answer to part b. Plug this time back into the second equation to find the velocity after the fuel runs out.

Looking for something else?

Not the answer you are looking for? Search for more explanations.