anonymous
  • anonymous
In the xy plane, the points with coordinates (0,-5) and (6,-2) lie on line L. Line P contains the points with coordinates (-5,0) and is perpendicular to Line L. What is the x-coordinate of the point where L and P intersect?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
For Line L: \[y=mx+b\] You're given the y-intercept which is the -5, so \[y=mx-5\] Use the other point on L to get the gradient (m) but substituting in the point for x & y, & solve to get m: \[-2=m*6-5\]\[-2 = 6m-5\]\[-2+5=6m\]\[3=6m\]\[m=1/2\]Given that the line P is perpendicular to the line L, the gradient of line P must be -2 (opposite sign & reciprocal value to line L), so equation of Line P: \[y=-2x+b\]substitute the point you're given (that is (-5,0) to find the required value for b, which is the y-intercept of the line P. you get\[0=-2*-5 + b\]\[0=10+b\]\[b=-10\]Line P is \[y=-2x-10\]To find the intersection, equate the two lines and solve to find x\[x/2-5 = -2x-10\]\[x-10 = -4x-20\]\[5x = -10\]\[x=-2\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.