• anonymous
A flower garden at Dow's Lake is planted in the shape of a parallelogram with a semi-circle at each end. The parallelogram is 5.58 x 2.7 m long and the height of the parallelogram is 2.25 m. What is the area of the garden? If a bag of mulch covers 65 ft2, how many bags of mulch are needed to cover the entire area?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Area of Parallelogram = height * base = 2.25 * 5.58 = 12.555 m2 Adding two semi circles of opposite sides add to a circle. Hence, there will be two circles of radius 5.58 / 2 = 2.79 m and 2.7 / 2 = 1.35 m. Hence area of these two circles area \[Area = \pi (2.79^{2} + 1.35^{2}) = 30.180 m ^{2}\] Hence total area = 30.180 + 12.555 = 42.735 m2 Now, we know 1 ft = 0.3048 m => \[1 m ^{2} = 10.764 ft ^{2}\] hence, area in ft2 = 459.999 ft2 = 460 ft2 (approx) Hence number of mulch bag required = 460 / 65 = 7.07 = 7 (approx)

Looking for something else?

Not the answer you are looking for? Search for more explanations.