A virus measures 0.000022mm in length. what value expresses the length of the virus in the scientific notation

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A virus measures 0.000022mm in length. what value expresses the length of the virus in the scientific notation

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1328719909937:dw|
how did you get that ?
Consider the number 500. Isn't this the same as saying 5*10*10? So we can express this as:\[5*10^2\] So for every 10's place you go up or down a power of ten. So in this example, consider the digits as moving 10's places downwards. |dw:1328720657582:dw| So count every step down, and you'll see you're moving 5 decimal places to the right, giving you smaller and smaller numbers. So you know it's: \[2.2*10^{-5}\] Why do you stop there at 2.2 and not 0.22 or 22.0? Because scientific notation puts everything in terms of it's highest, single 1's digit with and that's just how it is.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

OKAYYY thankkss

Not the answer you are looking for?

Search for more explanations.

Ask your own question