anonymous
  • anonymous
A curve is defined parametrically by x=e^(t) and y=2e^(-t). An equation of the tangent line to the curve at t=ln2 is
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

TuringTest
  • TuringTest
vector form of the line:\[\vec r(t)=\]and the point is\[r(\ln2)=<2,1>\]now we need the derivative of the vector function\[\vec r'(t)=\]and the derivative at that point is\[r'( \ln2)=<2,-1>\]the parametric formula for a line parallel to a vector u from a point is\[\vec v(t)+t\vec u=<2,1>+t<2,-1>=<2+2t,1-t>\]with the components written individually we have\[x=2+2t\]\[y=1-t\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.