anonymous
  • anonymous
Help please f(x) = cubed root 3x^3-1 find f^-1(x) and (f^-1 of) (135)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
asnaseer
  • asnaseer
the easiest way of tackling problems like this is to write them in the form y=f(x), then swap the x and y's and finally solve for y. so, in this case we are given:\[y=f(x)=\sqrt[3]{3x^3-1}\]so first step is to swap the x and y's, giving us:\[x=\sqrt[3]{3y^3-1}\]now we need to solve for y. so lets cube both sides to get:\[x^3=3y^3-1\]therefore:\[y=\sqrt[3]{\frac{1+x^3}{3}}\]this is your inverse function. so now replace y with \(f^{-1}(x)\) to get:\[f^{-1}(x)=\sqrt[3]{\frac{1+x^3}{3}}\] to work out \(f^{-1}(135)\) just substitute x=135 into the equation above.
anonymous
  • anonymous
thankyou very much!
asnaseer
  • asnaseer
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
can i ask one more question for a different problem : f(x)=2x+3 find (f(x))^-1
asnaseer
  • asnaseer
Its best if you post this as a new question.
asnaseer
  • asnaseer
but the principal to solve it the same as I outlined for you above.

Looking for something else?

Not the answer you are looking for? Search for more explanations.