anonymous
  • anonymous
Simplify the following quotient of complex numbers into the form a + bi. (-8-8i)/(1+2i) is 7-6i the correct answer or am I doing this wrong?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Multiply top and bottom by (1+2i), so (-8-8i)(1+2i)/(1+2i)(1-2i). What does that get you?
anonymous
  • anonymous
So the question is this: -8-8i/1+2i Now, you don't want a denominator in form a+ib right? So, just multiply both numerator and denominator with 1-2i which is the conjugate of 1+2i. We get: \[-8+16i-8i+16i ^{2}\] as numerator and, \[1-4i ^{2}\] as denominator. We know that, \[i ^{2}=-1\] So substituting the value, we get: -8+8i-16 as numerator and, 1+4= 5 as denominator. Now, just put them in p/q form, you have: 8i-24 as the numerator, and 5 as denominator. Take 8 common from the numerator, we are left with: 8/5*(i-3) Which is the final answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.