anonymous
  • anonymous
find the domain and range of f(x)=1+x(square)
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ash2326
  • ash2326
\[f(x)=1+x^2\] as there is no x for which f(x) is undefined domain= all real numbers the minimum value of f(x)= 1 when x=0 so range = [1, \(\infty\)) or f(x)>=1
perl
  • perl
domain: all reals range : [1 , oo)
perl
  • perl
ash, good explanation ;)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

perl
  • perl
we take as the domain the largest possible set of real numbers. since there are no restrictions (no points that are undefined), the domain is all reals
perl
  • perl
, it is assumed that the domain is the largest possible set of reals
ash2326
  • ash2326
izzati you got it?
anonymous
  • anonymous
actually i dont understand...it is in exam we should write it like that??
ash2326
  • ash2326
yeah izzati
anonymous
  • anonymous
how you got the range..explain plez..
ash2326
  • ash2326
We have \[f(x)=1+x^2\] we know that x^2 's minimum value is 0 whether x>0 or x<0 , value of square of x will be greater than 0 so its minimum value is 0 so f(x)'s minimum value is 1+0=1 when x^2 increases, f(x) also increases when x -----> infinity , f(x) ----> infinity no maximum limit of f(x) so f(x) 's range is greater than or equal to 1 f(x)>=1 or range is [1, \(\infty\))
anonymous
  • anonymous
ok.i got it thanx

Looking for something else?

Not the answer you are looking for? Search for more explanations.