find the domain and range g(z)= 1 over square root 4-z square

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

find the domain and range g(z)= 1 over square root 4-z square

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

find the value of z that will make the equation undefined... sq root (4-z^2) = 0 4 - z^2 = 0 4 = z^2 z = +/- 2 so...your domain is all values of x except for 2 and -2...which can be written as...(-inf, -2)U(2, inf) as for the range...cross multiply. y(sq root 4-z^2) = 1 4 - z^2 = 1/y^2 z^2 = 4 - 1/y^2 z^2 = (4y^2 - 1 )/y^2 get the sq root z = sq root (2y +1)(2y-1)/y anyways...your range is everything below and equal to zero...so your range is (-inf, 0)U(0, inf)
how you throw away the square root to find range?
y(sq root 4-z^2) = 1 divide both sides by y sq root 4-z^2 = 1/y square both sides... 4-z^2 = 1/y^2

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hmmm \[\frac{1}{\sqrt{4-z^2}}\] need \[4-z^2>0\] \[(2-z)(2+z)>0\] i think this is \[(-2,2)\] as the domain
it is a square root right?
is z a real variable?
ooooooooh range i see ok that would be \[(\frac{1}{2},\infty)\]
reason as follows. this beast can get as large as possible by making the denominator small, that is make x close to 2 or -2 the denominator is largest when x is 0, and when x is 0 you get \[\frac{1}{\sqrt{4}}=\frac{1}{2}\] so that is the minimum value of the function
so to be more precise, range is \[[\frac{1}{2},\infty)\] or \[\frac{1}{2}\leq y<\infty\]
actly which answer the correct one??? im blur
\[g(z)=\frac{1}{\sqrt{4-z^2}}\] Domain \[(-2,2)\] Range \[[\frac{1}{2},\infty)\]
r u sure????
why u say that x>0

Not the answer you are looking for?

Search for more explanations.

Ask your own question