another...lim x->0, x+xcosx/sinxcosx?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

another...lim x->0, x+xcosx/sinxcosx?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

factor
\[\frac{x(1+\cos(x))}{\sin(x)\cos(x)}\] the break in two parts as before
i got that far...let me c if the next step jumps out at me

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

think about a limit that you know (hint, sine) and a limit that is obvious
haha its not
k...
limit is 0, but its not clicking...
that is because it is not zero
oh man that i am really lost now..i thought the lim of sine at 0 is 0?
\[\frac{x}{\sin(x)}\times \frac{1+\cos(x)}{cos(x)}\]
x/sinx=1 righ?
as x goes to zero...yes
still lost on how the 2 comes out as the answer?
does 1+cosx/cosx=2?
cos(0)=1
(1+1)/1=2
1+cos(x) is 1+1?
got it!!!!!!!
\[\lim_{x\to 0}\frac{1+\cos(x)}{\cos(x)}=\frac{1+1}{1}=2\]
thanks zarkon and satel!!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question