anonymous
  • anonymous
If xy = 6 and x^2 + y^2 = 16, then what is the value of (x + y)?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
X+y=5
anonymous
  • anonymous
please can you explain
anonymous
  • anonymous
im trying to remember how to do this one sec

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[x ^{2}+y ^{2}+2xy =16+6\times2\] \[\left( x +y \right)^{2}=28\] \[x +y =\pm \sqrt{28}\]
anonymous
  • anonymous
dunno how you came up with that but no way that works
anonymous
  • anonymous
Thanks
anonymous
  • anonymous
its obvious the values of x and y are 2 and 3 but i cannot for the life of me remember how to explain it
anonymous
  • anonymous
so x+y=5
myininaya
  • myininaya
\[(x+y)^2=x^2+2xy+y^2=x^2+y^2+2(xy)=16+2(6)=16+12=28\] so we have \[(x+y)^2=28 => x+y=\pm \sqrt{28}\]
myininaya
  • myininaya
so i agree with lazy :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.