anonymous
  • anonymous
Here's another math puzzle. ;D "Consider a string of n 7's, i.e., 7777...77, into which + signs are inserted to produce an arithmetic expression. For example, 7+77+777+7+7=875 could be obtained from eight 7's. For how many values of n could we insert + signs so that the resulting expression has a value of 7000?" From the 2004 AIME II.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
well... 7*10=70 7*100=700 7*1000=7000 so 1000 7's? or n = 1000? unless there is something deeper to this problem...
anonymous
  • anonymous
Not "what values of n" but "how many values of n".
anonymous
  • anonymous
n = 28 i.e, 777 + 777 + 777 + .... 9 times + 7 = 7000

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Oh I am sorry there are two values of n 3 and 1
anonymous
  • anonymous
False, that is not the answer.
anonymous
  • anonymous
n = 1000, n = 100, n=28 hence 3 values
anonymous
  • anonymous
sorry one value is 190 not 100
anonymous
  • anonymous
Here's the solution for those who are interested. http://www.artofproblemsolving.com/Wiki/index.php/2004_AIME_II_Problems/Problem_14
anonymous
  • anonymous
hey will take sometime I just found out there can be many such values

Looking for something else?

Not the answer you are looking for? Search for more explanations.