If x and y are acute angles whose sum is 60 degrees, what is the largest possible value of the following: (tan x)(tan y)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If x and y are acute angles whose sum is 60 degrees, what is the largest possible value of the following: (tan x)(tan y)?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Are you upto solving this set: http://answers.yahoo.com/question/index?qid=20111214061522AA8yZ07 ?
No. But, it appears that some yahoo may be guilty of _____. I wish I could see the date the question was posed.
Um just guessing, is \( \large \frac13 \) is the answer?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes it is:) i'm working on proving it though, taking derivative didn't get me anywhere
Aha, I just used inequalities, the simple AM-GM one, in more simple terms the for constant sum the product of two variables is highest when they are equal.
Yes, 1/3 is correct and can be concluded intuitively. The proof is not too bad.
i know im over complicating it, but here is a proof using trig tan(x+y) = tan(60) = sqrt3 \[\tan(x+y) = \frac{\tan x +\tan y}{1-\tan x \tan y}\] \[\rightarrow \frac{\tan x +\tan y}{1-\tan x \tan y} = \sqrt{3}\] solving for (tanx)(tany) \[\tan x \tan y = 1- \frac{\tan x +\tan y}{\sqrt{3}}\] Differentiating: \[\rightarrow - \frac{\sec^{2} x +y'\sec^{2} y}{\sqrt{3}}\] Now y = 60-x, so y' = -1 setting derivative equal to 0 \[ \frac{\sec^{2} y -\sec^{2} x}{\sqrt{3}} = 0 \rightarrow \sec^{2}y = \sec^{2}x\] \[\rightarrow y=x\] Thus proving (tanx)(tany) is maximized when x=y=30 \[\tan 30 *\tan 30 = \frac{1}{3}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question