anonymous
  • anonymous
Evaluate the surface integral \(\int\int_{\sigma}\sqrt{2e^{2(x+y)}+1}\text{ dS}\) given that S is the surface \(z=e^{x}e^y\) above the triangular region in the xy-plane enclosed by \(y=1-x\) and the coordinate axes.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
Here's our region D|dw:1329748292145:dw|so our bounds will be\[0\le y\le1-x\]\[0\le x\le 1\]now we need dS, and since this surface is given by z=g(x,y) our formula for that will be\[dS=\sqrt{(\frac{dz}{dx})^2+(\frac{dz}{dy})^2+1}dA=\sqrt{(e^xe^y)^2+(e^xe^y)^2+1}dA\]\[dS=\sqrt{2e^{2(x+y)}+1}dA\]which is extremely convenient, because now our integral will be much easier\[\int\int_\sigma\sqrt{2e^{2(x+y)}+1}dS=\int_{0}^{1}\int_{0}^{1-x}2e^{2(x+y)}+1dydx\]you should be able to integrate this yourself without too much trouble.

Looking for something else?

Not the answer you are looking for? Search for more explanations.