Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

A cart of mass mA = 5.9 kg is pushed forward by a horizontal force F. A block of mass mB = 0.9 kg is in turn pushed forward by the cart. If the cart and the block accelerate forward fast enough, the friction force between the block and the cart would keep the block suspended above the floor without falling down. Given g = 9.8 m/s^ 2 and the static friction coefficient µs = 0.67 between the block and the cart; the ?oor is horizontal and there is no friction between the cart and the ?oor. Calculate the minimal force F on the cart that would keep the block from falling down. Answer i

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Answer in Newtons
please help!
Be patient. I'm working on it.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thanks :)
Okay. In order to prevent slipping, the force exerted by the cart on the block must be such that the frictional force balances that of gravity. The frictional force is mu times that force. Now the force of gravity is g * m_b. So the force that must be exerted by the cart is F_c = m_b * g / mu. Now, with a free body diagram, we can see that the force exerted on the block is F_c = m_b * a, where a is the acceleration. So, a = F_c / m_b = g / mu. But if F is the force applied to the cart, F = (m_a+m_b)*a. So, F = (m_a + m_b) * g / mu. Plugging in m_a = 5.9kg, m_b = 0.9 kg, mu = 0.67, and g = 9.8 m/s^2, we get: F = 99.5 N

Not the answer you are looking for?

Search for more explanations.

Ask your own question