KingJ
  • KingJ
What is the sum of the arithmetic sequence 8, 14, 20 …, if there are 24 terms?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
S = 2a + (n-1)d Where a = first number in sequence, n is nth term you are looking for and d is the common difference.
anonymous
  • anonymous
sorry, it should be: S = n/2( 2a + (n-1)d)
Mertsj
  • Mertsj
\[s _{n}=\frac{n}{2}(a _{1}+a _{n})\] To find the 24th term use: \[a _{n}=a _{1}+(n-1)d=8+(24-1)6=146\] \[s _{n}=\frac{24}{2}(6+146)\] \[s _{n}=1824\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
There. I think I finally got it right.
KingJ
  • KingJ
THANK YOU
Mertsj
  • Mertsj
yw
anonymous
  • anonymous
|dw:1328989953105:dw|
anonymous
  • anonymous
1848
anonymous
  • anonymous
you put a1=6 but it is 8
anonymous
  • anonymous
|dw:1328990276982:dw|
anonymous
  • anonymous
The correct answer is 1848! Tyy!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.