Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

What is the sum of the arithmetic sequence 8, 14, 20 …, if there are 24 terms?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
S = 2a + (n-1)d Where a = first number in sequence, n is nth term you are looking for and d is the common difference.
sorry, it should be: S = n/2( 2a + (n-1)d)
\[s _{n}=\frac{n}{2}(a _{1}+a _{n})\] To find the 24th term use: \[a _{n}=a _{1}+(n-1)d=8+(24-1)6=146\] \[s _{n}=\frac{24}{2}(6+146)\] \[s _{n}=1824\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

There. I think I finally got it right.
THANK YOU
yw
|dw:1328989953105:dw|
1848
you put a1=6 but it is 8
|dw:1328990276982:dw|
The correct answer is 1848! Tyy!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question