anonymous
  • anonymous
The sum of two numbers is 3. The difference of the squares of the numbers is 33. What is the absolute value of the difference of the two numbers?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
x+y=3 (x+y)(x=y)=33 x-y=|a|
nenadmatematika
  • nenadmatematika
3
anonymous
  • anonymous
oops, I meant (x-y) not (x=y)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
it is actually 11.
anonymous
  • anonymous
\[a - b = 3\] \[a ^{2} - b ^{2} = 33\] Rearrange eqaution 1: b = 3-a Substitute into equation 2: \[a ^{2} - (3-a) ^{2} = 33\] Solve for a...
anonymous
  • anonymous
I substituted so ir is 3(x-y)=33 divided 3 from both sides. x-y=33/3 x-y=11 absolute value of 11 is 11.
anonymous
  • anonymous
\[x+y=3\] \[x^2-y^2=33\] \[(x+y)(x-y)=33\] \[x-y=\frac{33}{x+y}\] \[x-y=\frac{33}{3}=11\]
anonymous
  • anonymous
I did it a bit different, but that's okay! :D
anonymous
  • anonymous
Yes, you way is better.
nenadmatematika
  • nenadmatematika
just a second 7+(-4)=3 and 7^2-4^2=33 so the numbers are 7 and -4...oh no I'm sorry it's the absolute value of the DIFFERENCE...:D sorry :D you're right :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.