anonymous
  • anonymous
Find a non-zero, two-by-two matrix such that: [-6, -5] x [__, __] = [0, 0] [24, 20] [__, __] [0, 0] These are all 2x2 matrices. How do we find the missing numbers?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Find a non-zero, two-by-two matrix such that: [-6, -5] x [__, __] = [0, 0] [24, 20] [__, __] [0, 0] These are all 2x2 matrices. How do we find the missing numbers?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Not true. \[\left[\begin{matrix}-5 & -5 \\ 6 & 6\end{matrix}\right]\] will do the trick.
anonymous
  • anonymous
Wondering how I obtained the above answer? Simply carry out the following matrix multiplication: \[\left[\begin{matrix}-6 & -5 \\ 24 & 20\end{matrix}\right]\left[\begin{matrix}a & b \\ c & d\end{matrix}\right]= \left[\begin{matrix}0 & 0 \\ 0 & 0\end{matrix}\right]\] You'll get two systems of two equations in two unknowns. The first two will involve a and c the second b and d. They are homogeneous equations (right hand sides are zero), but they are dependent (one equation in a pair is a multiple of another.) So we can let one of the variables be a parameter and solve for the other. There are an infinite number of solutions. Any multiple of the matrix I gave will also work.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Looking for something else?

Not the answer you are looking for? Search for more explanations.