Mertsj
  • Mertsj
Find the area bounded by the given curves using integration, x^2 =2ay , y=2a
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
nenadmatematika
  • nenadmatematika
|dw:1329008284308:dw|
Mertsj
  • Mertsj
I understand the graph. I want to see the integration.
nenadmatematika
  • nenadmatematika
|dw:1329008454303:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
|dw:1329008751980:dw|
Mertsj
  • Mertsj
Why isn't the integral of 2a, 2ax?
nenadmatematika
  • nenadmatematika
it is, but I plugged in the boundaries -2a and 2a immediately
Mertsj
  • Mertsj
How is (2x)^3= 16a^3
Mertsj
  • Mertsj
Rather (2a)^3=16a^3
nenadmatematika
  • nenadmatematika
|dw:1329009021256:dw|
nenadmatematika
  • nenadmatematika
we think exactly the same I just prefer to plug in the boundaries right away.Also this is also useful thing that you can use when you try to solve the integral of an even function:
nenadmatematika
  • nenadmatematika
|dw:1329009164444:dw|
nenadmatematika
  • nenadmatematika
I could use this property in the example above, I would get the same result :D
Mertsj
  • Mertsj
Wow!! I finally got it. Thank you so much for your patience.
nenadmatematika
  • nenadmatematika
ok, if you have some troubles with integrals be free to post so we can solve it fast and easy....well, I gotta go now, it's 2:23 in my country...good night :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.