Mertsj
  • Mertsj
Find the volume of the solid obtained by rotating the region bounded by x=0 and x = 9-y^2 about the line x=-1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
|dw:1330221858790:dw|I think judging by the picture the way to go is the so-called 'washer method' the graph of x=9-y^2 intersects the line x=0 at y=3 and y=-3, so those will be our bounds of integration now for the radii...
TuringTest
  • TuringTest
|dw:1330222034408:dw|the outer radius will be from x=-1 to f(y), so the distance is ro=f(y)-(-1) the inner radius is from x=-1 to the x-axis, so that is 1 here is an overhead view of each washer that we will use|dw:1330222180739:dw|so the integral will be\[\pi\int_{a}^{b}r_o^2-r_i^2dy=\pi\int_{-3}^{3}(f(y)+1)^2-1^2dy\]\[=\pi\int_{-3}^{3}(10-y)^2-1dy\]
TuringTest
  • TuringTest
whoops, typo on the last integral (forgot to that y is squared): \[V=\pi\int_{a}^{b}r_o^2-r_i^2dy=\pi\int_{-3}^{3}(f(y)+1)^2-1^2dy\]\[V=\pi\int_{-3}^{3}(10-y^2)^2-1dy\]and since this integrand is even we can write\[V=2\pi\int_{0}^{3}(10-y^2)^2-1dy\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
Thanks Turing. You are awesome!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.