myininaya
  • myininaya
for supercrazy: how to solve \[3^{4x-7}=4^{2x+3}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
myininaya
  • myininaya
Do you remember \[\ln(x^r)=r \ln(x)\]
myininaya
  • myininaya
i got stood up
anonymous
  • anonymous
lol

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
those loger-epo rules make more sense when defined by calculus
anonymous
  • anonymous
@Myini-Did I do something? o.o Sorry I will delete my comment.
myininaya
  • myininaya
No this person wanted to know how to do this problem in chat and I said was going to post it here and she never came. :(
anonymous
  • anonymous
@Myini-You did your work nevertheless, shows you're a sincere person :)
anonymous
  • anonymous
Just to practice latex \[\begin{align}3^{4x-7}=4^{2x+3} &<=> (4x-7)ln(3) &&=(2x+3)ln(4) \\ &<=> x4ln(3)-7ln(3) &&= x2ln(4)+3ln(4) \\ &<=> x(4ln(3)-2ln(4)) &&= 3ln(4)+7ln(3) \\ & <=> x &&={ 3ln(4)+7ln(3) \over 4ln(3)-2ln(4)} \\ or\ & x={ln(4^3.3^7) \over ln(3^4.4^2) }&& = {ln(139968)\over ln(1296)}\approx 1.65\end{align} \]
myininaya
  • myininaya
Pretty mkone!
myininaya
  • myininaya
well i think i see something just a little off on your solution
myininaya
  • myininaya
\[4 \ln(3)-2 \ln(4)=\ln(3^4)-\ln(4^2)=\ln(\frac{3^4}{4^2})\]
anonymous
  • anonymous
I'm not getting what's off is it the presentation. If so I agree \(ln({3^4 \over 4^2}) \) looks better but then what about \(2ln({3^2 \over 4}) \) ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.