anonymous
  • anonymous
Integral sec t (tan t)^2 dt
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
u = sect
TuringTest
  • TuringTest
hah, you got that from that sqrt(x-2)/sqrt(x-1) thing, right?
TuringTest
  • TuringTest
sect(tan^2t)=sect(sec^2t-1)=sec^3t-sect

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I did
TuringTest
  • TuringTest
\[\int\sec^3 tdt\]\[u=\sec t\]\[dv=\sec^2 t\]integrate by parts
anonymous
  • anonymous
I've gotten that far in the equation already, just not sure what to do with the sec^3 t
anonymous
  • anonymous
ah, okay.
TuringTest
  • TuringTest
^there it is this will be one of those integrals that repeats, so you will wind up adding the integral of sec^3 to both sides you will still have to integrate sec though, hope you remember how to do that ;)
anonymous
  • anonymous
I do :)
anonymous
  • anonymous
correst

Looking for something else?

Not the answer you are looking for? Search for more explanations.