Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

I am trying to solve the following problem, and I have a solution which I don't understand, can you help me? "Show that in a triangle the perpendiculars drawn from the vertices are concurrent. "

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Here is the solution that I don't understand
1 Attachment
Exactly which part u dont understand? It is all about triangle law of vector addition and dot products
What has the solution shown so that its clear that the perpendiculars are concurrent.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Any two lines have to intersect(unless they are parallel). Now, if a third line passes through the intersection of these two lines, then the three are concurrent. In this solution, they have taken two perpendiculars. Through their intersection point a line has been drawn, and if that line happens to be the altitude through C, then all perpendiculars have to be concurrent. That's what we have to prove here. The dot product of two perpendicular lines is 0. So, we must prove that the dot product of AB and CF is zero. I hope it helped, if not please say
Just a sec, let me read it and understand
Have you seen they have used a constant like \(l\) while writing \[la(c-b)=0\] Whats the need of that \(l\)
Well, let me guess. Here OA=a. But actually we see that AD is perpendicular to BC and also intersects it. So, they took the length of AD instead of AO. So, AD/AO=l is assumed. so that al is the length of AD. But I dont think there is any compulsion of taking l and m here.
Do you have any better solution for it?
Of course there is a geometrical solution to this. Well, let me work on it. I will post it as soon as i complete it
No thank you, I need to make it through vector
Thats mandatory for me
OK, thank you!
OK so mani jha provided with the explanation that " The dot product of two perpendicular lines is 0. So, we must prove that the dot product of AB and CF is zero. I hope it helped, if not please say", but it didn't quite satisfy me. Can you think of any better explanation. Does this solution have anything to do with vector equation?

Not the answer you are looking for?

Search for more explanations.

Ask your own question