integral of: tan^78 (x) * sec^4 (x)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

integral of: tan^78 (x) * sec^4 (x)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Is... that tan(x)^78? Good... Gods...
I'm not doing 78 half angle identity integrals.
yes :P

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Apparently there's a clever way to do it
You should make your teacher mad and do 70 half angle identity integrals.
Holy crap! thats a lot Tangents, anways: \[\sec^4x = \sec^2x \sec^2x = (\tan^2x +1)(\sec^2x)\] now use a U-Sub where: \[u=tanx\] \[du=\sec^2x dx\] so now we have: u^78 (u^2 + 1) du distributing the u^78, we get: u^80 - u^78 du now just integrate and we get (1/81) (u^81) + (1/79) (u^79) now plug back in the tanx (1/81) (tan^81x) + (1/79)(tan^79x)
i might have made a mistake somwhere, i mean, THATS A LOT O TANGENTS haha
Whoa man, that's like, clever. I was thinking also of something clever, like a series representation of each new half angle integral, but your method was by far the best.
Haha I just learned how to integrate the trig stuff so its still fresh in my mind. But I think it would be pretty smart to use a Series representation for each of the half-angles
That's the right answer. Thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question