ggrree
  • ggrree
integral of dx/[1+sqrt x] (rewritten in reply)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ggrree
  • ggrree
\[\int\limits_{} {dx \over 1+ \sqrt x}\]
myininaya
  • myininaya
\[\int\limits_{}^{}\frac{1}{1+\sqrt{x}} dx\] \[\text{ let } \sqrt{x}=\tan^2(\theta) \] \[ x=\tan^4(\theta)\] => \[dx=4 \tan^3(\theta) \sec^2(\theta) d \theta\] So we have \[\int\limits_{}^{}\frac{4 \tan^3(\theta) \sec^2(\theta)}{1+\tan^2(\theta)} d \theta\] \[4 \int\limits_{}^{}\tan^3(\theta) d \theta\] That should help...
myininaya
  • myininaya
We could try another way if you don't like this one...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mimi_x3
  • Mimi_x3
\[\int\limits\frac{1}{1+\sqrt{x}} dx\] \[x = u^2 =>u=\sqrt{x} \] \[\frac{dx}{du} =2u =>dx=2u*du\] \[=>\int\limits\frac{1}{1+u} *2u*du =\int\limits\frac{u}{u+1} \] Might be easier..
myininaya
  • myininaya
yep that's the one
Mimi_x3
  • Mimi_x3
woops, sorry
Mimi_x3
  • Mimi_x3
woops, i made a typo, the last one should be.. \[2\int\limits\frac{u}{u+1} du\]
anonymous
  • anonymous
Let u = sqrtx -> u^2 = x => 2udu = dx -> 2 Int ( udu/ u + 1) -> 2 Int [ 1 - 1/(u + 1 )] du = 2 [ u - ln(u + 1) ] = 2 ( sqrtx - ln(sqrtx + 1 ) + C
ggrree
  • ggrree
thanks guys!

Looking for something else?

Not the answer you are looking for? Search for more explanations.