Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

moneybird Group Title

Suppse that \[f(n)=2n-\lfloor \frac{1+\sqrt{8n-7}}{2} \rfloor\] and \[g(n)=2n\lfloor \frac{1+\sqrt{8n-7}}{2} \rfloor\] for each positive integer n. Suppose that A = {f(1); f(2); f(3); ...} and B = {g(1); g(2); g(3);...}; that is, A is the range of f and B is the range of g. Prove that every positive integer m is an element of exactly one of A or B.

  • 2 years ago
  • 2 years ago

  • This Question is Closed
  1. Mr.Math Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I feel lazy to try it out now, but I have an idea for you that you might want to try. Divide your proof into two parts. i) The first part shows that \(g(n)\ne f(n)\) \(\forall n\in \mathbb{N}\). ii) The second part shows that if \(\forall n\in \mathbb{N}\), \(f(n)\ne m\) for some integer m, then \(\exists n \in \mathbb{N} \) such that \(g(n)=m\).

    • 2 years ago
  2. mukushla Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i really want to see the solution for this problem :)

    • 2 years ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...


  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.