Let v1, v2, ..., Vn be a list of nonzero vectors in a vector space V such that no vector in the list is a linear combination of its predecessors. Show that the vectors in the list form an independent set.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let v1, v2, ..., Vn be a list of nonzero vectors in a vector space V such that no vector in the list is a linear combination of its predecessors. Show that the vectors in the list form an independent set.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

It's almost self-evident from the definition of independence, but here goes. A = no vector is a linear comb of its predecessors B = vectors are indep We will show A => B by showing not B => not A. Assume the vectors are not indep. Then there exists at least one vector that can be expressed as a linear combination of others. Call it v*. If all of the others in the linear combination are predecessors of v* then we are done, so assume not: assume at least one vector in the linear combination follows v*. Then this vector is a linear combination of the others together with v*, which contradicts A. Hence not B => not A, so A => B.
I just read this twice, and I'll have to really read these definitions and proofs carefully. Thank you for your detailed answer, I appreciate it.
No problem. It may help to think of this in the case of just three vectors. For example ...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If you have v1, v2, and v3, and they are dependent, then a v1 + b v2 + c v3 = 0. Which means -a v1 + -c v3 = b v2 ( v2 is a lin comb, but not of its predecessors) but then -a v1 + -b v2 = c v3 (so v3 *is* a lin comb of its predecessors).

Not the answer you are looking for?

Search for more explanations.

Ask your own question