• anonymous
Another fiasco of wolframalpha: How many integer solutions are there for the in-equation \[ x^2 +y^2 \le 25 \]? And this is what wolframalpha says: But I got a different answer, Just for fun, can you find the right answer?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
@ash2326: I posted twice in the same group?
  • Mr.Math
Obviously the maximum value \(x\) or \(y\) can take is \(5\), and the minimum is \(-5\). We can list all the choices as: At \(x=\pm 5\), \(y\) can take only the value \(0\). At \(x=\pm4\), \(y\) can take the values \(0, \pm1, \pm2\) and \( \pm3\). At \(x=\pm 3\), \(y\) can take the values \(0, \pm1, \pm2, \pm3\) and \(\pm4\). At \(x=\pm 2\), \(y\) can take the value \(0, \pm 1, \pm 2, \pm 3\) and \( \pm 4\). At \(x=\pm1\), \(y\) can take the values \(0, \pm1, \pm 2, \pm 3\) and \(\pm 4\). At \(x=0\) \(y\) can take the values \(0, \pm1, \pm2, \pm 3, \pm 4\) and \(\pm 5\). So the total number of integer solutions is \(2+2(7)+2(9)+2(9)+2(9)+11=81.\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.