anonymous
  • anonymous
Find the derivative of the function. sqrt(x) + 1/4(sin(2x)^2)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sqrt{x}+1/4\sin(2x)^{2}\]
anonymous
  • anonymous
1/2x^-1/2 + 1/2sin(2x) * cos(2x) * 2
anonymous
  • anonymous
\[1/\sqrt{x} + \sin(2x)\cos(2x)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KingGeorge
  • KingGeorge
\[{d\over dx} \;\;\; \sqrt x+{1\over4}\sin(2x)^2 = {1\over{2\sqrt x}}+ {2\over2}\sin(2x)\cos(2x)\]
anonymous
  • anonymous
well the book says
KingGeorge
  • KingGeorge
Remember you're also multiplying the \[{1\over \sqrt{x}}\]by \(1\over2\)
anonymous
  • anonymous
\[1/\sqrt{x} + 2xcos(2x)^{2}\]
anonymous
  • anonymous
i mean yes the 1/2
anonymous
  • anonymous
is there an identity that makes it 2xcos(2x)^2
KingGeorge
  • KingGeorge
Not that I know of. Let me see if I can get wolfram to change it.
KingGeorge
  • KingGeorge
Well, when I use wolfram to integrate \({1\over \sqrt{x}}+2x \cos^2 (2x)\) I don't get the original function back, so I'm thinking the book is wrong.
anonymous
  • anonymous
k i was wondering myself

Looking for something else?

Not the answer you are looking for? Search for more explanations.