Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
ggrree
Group Title
Let R be the region in the first quadrant enclosed between the xaxis and the curve y = x  x^2. There is a straight line passing through the origin which cuts the region R into two regions so that the area of the lower region is 7 times the area of the upper region.
Find the slope of this line.
 2 years ago
 2 years ago
ggrree Group Title
Let R be the region in the first quadrant enclosed between the xaxis and the curve y = x  x^2. There is a straight line passing through the origin which cuts the region R into two regions so that the area of the lower region is 7 times the area of the upper region. Find the slope of this line.
 2 years ago
 2 years ago

This Question is Closed

dumbcow Group TitleBest ResponseYou've already chosen the best response.1
dw:1330592696055:dw First solve for the point where line intersects the curve xx^2 = mx x(1x) = mx 1x = m x = 1m Then define area A (upper region) area of entire region R is 8A so A = 1/8*R A is also area above line from 0 to 1m \[A = \int\limits_{0}^{1m}(xx^{2}) mx = \frac{1}{8}\int\limits_{0}^{1}xx^{2}\] combine x terms in 1st integral \[A = \int\limits\limits_{0}^{1m}(1m)xx^{2} = \frac{1}{8}\int\limits\limits_{0}^{1}xx^{2}\] integrate and evaluate to solve for m
 2 years ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.