ggrree
  • ggrree
Integral of tan^2(x)sec(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
bahrom7893
  • bahrom7893
u is Sec(x)!!!!
bahrom7893
  • bahrom7893
du is tan^2(x) dx.. the rest is for myin.
TuringTest
  • TuringTest
not quite bahrom

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

myininaya
  • myininaya
\[\int\limits_{}^{}\tan(x) \cdot \tan(x) \sec(x) dx=\tan(x) \cdot \sec(x)-\int\limits_{}^{}\sec^2(x) \cdot \sec(x) dx\]
bahrom7893
  • bahrom7893
oh wait lol i got it the other way around hahaha
myininaya
  • myininaya
And you can look at the integral sec^3(x) and use integration by parts there
myininaya
  • myininaya
oh wait i didn't need to do what i did
myininaya
  • myininaya
\[\int\limits_{}^{}(\sec^2(x)-1)\sec(x) dx=\int\limits_{}^{}\sec^3(x) dx-\int\limits_{}^{}\sec(x) dx\]
TuringTest
  • TuringTest
that person is leaving, just so you know they told me on another post
myininaya
  • myininaya
\[\int\limits_{}^{}\sec^3(x) dx=\int\limits_{}^{}\sec^2(x) \sec(x)dx=\tan(x) \sec(x)-\int\limits_{}^{}\tan(x) \sec(x) \tan(x) dx\] \[\tan(x) \sec(x)-\int\limits_{}^{}(\sec^2(x)-1) \sec(x) dx\]
myininaya
  • myininaya
:(
TuringTest
  • TuringTest
I was doing problems with them for quite a while, but don't worry pretty sure they got what you were saying
myininaya
  • myininaya
yay i think there is enough info here
ggrree
  • ggrree
thanks to all of you! I got it now.

Looking for something else?

Not the answer you are looking for? Search for more explanations.