anonymous
  • anonymous
integrate y=2^x from x=0 to x=3
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

TuringTest
  • TuringTest
\[\frac d{dx}a^x=a^x\ln a\]so then what is the integral?
anonymous
  • anonymous
a^x +c ?
anonymous
  • anonymous
actually i don't know hahaha

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mikey
  • Mikey
The indefinite integral of a^x is a^x/lna + C
TuringTest
  • TuringTest
\[\int a^x\ln adx=a^x\]so\[\int a^xdx=\frac{a^x}{\ln a}\]+C if it is indefinite, but yours is definite anyway...
anonymous
  • anonymous
turning test can you please show me how this was derived. Thank you very much!
TuringTest
  • TuringTest
do you need me to prove that\[\frac d{dx}a^x=a^x\ln a\]? that would be the most thorough way to start
anonymous
  • anonymous
yes please!
TuringTest
  • TuringTest
we can prove it with logarithmic differentiation\[y=a^x\]taking the natural of of both sides\[\ln y=\ln(a^x)\]\[\ln y=x\ln a\]now differentiate implicitly\[\frac{y'}y=\ln a\]\[y'=y\ln a=a^x\ln a\]so what does this tell us about the antiderivative?
TuringTest
  • TuringTest
\[y'=a^x\ln a\iff y=a^x\]so\[\int a^x\ln a=a^x\]now we can use this info and do your integral with a u-substitution
TuringTest
  • TuringTest
watch the sub carefully:\[\int a^xdx\]\[u=a^x\]\[du=a^x\ln a dx\to\frac{du}{\ln a}=a^xdx\]subbing in our expresison for a^xdx we get\[\frac1{\ln a}\int du=\frac u{\ln a}+C=\frac{a^x}{\ln a}+C\]
TuringTest
  • TuringTest
any questions about that?
anonymous
  • anonymous
THANK YOU A MILLION TIMES OVER turning test! greatly appreciated
TuringTest
  • TuringTest
anytime :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.