anonymous
  • anonymous
How do I prove that \(n^3-n\) is always divisible with 6? I sort of see the solution since \(n(n-1)(n+1)\) will always have a part that is a 2 and a part that is 3. But I can't formulate it mathematically.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
3(2n) is always divisible by 6 ... not that it helps
amistre64
  • amistre64
the proof might be induction tho
Mr.Math
  • Mr.Math
Yes, induction is the best way.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Hmmm, give me a sec and I will try.
anonymous
  • anonymous
First \(f(n) = \frac{n^3-n}{6}\) \[f(1) = \frac{0}{6} = 0\] so valid, then \(f(k)\) and \(f(k+1)\) \[f(k+1) = \frac{(k+1)^3-(k+1)}{6}\] which boils down to \[f(k+1) = \frac{k(k+1)(k+2)}{6}\] which basically is \[f(k+1) = \frac{l^3-l}{6} \] where \(k=l+1\), is that good enough?
anonymous
  • anonymous
I mean \(k=l-1\)
Mr.Math
  • Mr.Math
I'll prove it for \(n\ge 0\). Let \(P(n)\) be the statement that \(n^3-n\) is divisible by \(6\). \(P(0)\) is obviously true as you said. Now assume that \(P(k)\) is true, that is \(k^3-k\) is divisible by \(6\) then for P(k+1): \[(k+1)^3-(k+1)=(k+1)(k^2+2k)=k^3+3k^2+2k=k^3-k+3k(k+1).\] By the induction hypothesis \(k^3-k\) is divisible by \(6\) and it's obvious that \(3k(k+1)\) is also divisible by \(6\) since either \(k\) or \(k+1\) is divisible by \(2\). Therefore \(P(k)\) implies \(P(k+1)\) and thus \(P(n)\) is true \(\forall n\ge 0\).
Mr.Math
  • Mr.Math
You can easily show that it's also true for \(n<0\) since [call \(f(n)=n^3-n\) ] \(f(-n)=(-n)^3+n=-(n^3-n).\)
anonymous
  • anonymous
I'm not sure about the \((k+1)^3-(k+1) = (k+1)(k^2+2k)\) of your equations, but the rest is right and with less work :) but I hope you approve of my method as well.
Mr.Math
  • Mr.Math
\[(k+1)^3-(k+1)=(k+1)((k+1)^2-1)=(k+1)(k^2+2k).\] As for your method, you didn't state clearly what is the induction hypothesis and you didn't show that f(k) implies f(k+1). That's at least what I think.

Looking for something else?

Not the answer you are looking for? Search for more explanations.