sasogeek
  • sasogeek
A manufacturing company makes open cylindrical containers each with a capacity of 100cm^3. if the radius of the cylinders is r cm, find the value for which the area of the metal sheet required is minimum.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sasogeek
  • sasogeek
the capacity is 1000cm^3
sasogeek
  • sasogeek
typo
anonymous
  • anonymous
\(A = 2 \pi r h \) \[ V = \pi r^2 h = 10^3 \] substitute and then differentiate you will get your answer.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

sasogeek
  • sasogeek
how do i get rid of h...
anonymous
  • anonymous
I gave you so many hints .. :)
sasogeek
  • sasogeek
ok so \(\large h=\frac{10^3}{\pi r^2} \) i substitute this and then differentiate...
anonymous
  • anonymous
Seems good to me.
sasogeek
  • sasogeek
when i substitute, i end up with \(\large A=\frac{2000}{r} \) ... how do i differentiate this and still get a value of r ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.